Topics in the November 2012 Exam Paper for CHEM1904

Click on the links for resources on each topic.

2012-N-2:

Crystal Structures

2012-N-3:

- Weak Acids and Bases
- Calculations Involving pKa

2012-N-4:

- Metal Complexes
- Coordination Chemistry

2012-N-5:

Kinetics

2012-N-6:

- Intermolecular Forces and Phase Behaviour
- Physical States and Phase Diagrams

2012-N-7:

- Alkenes
- Alcohols
- Organic Halogen Compounds
- Aldehydes and Ketones
- Carboxylic Acids and Derivatives

2012-N-8:

- Amines
- Carboxylic Acids and Derivatives

2012-N-9:

- Alkenes
- Stereochemistry

2012-N-10:

- Alcohols
- Organic Mechanisms and Molecular Orbitals

2012-N-11:

- Aromatic Compounds
- Organic Mechanisms and Molecular Orbitals

2012-N-12:

- Alcohols
- Organic Halogen Compounds

2012-N-13:

- Alcohols
- Carboxylic Acids and Derivatives
- Aromatic Compounds

THE UNIVERSITY OF SYDNEY

CHEM1902 - CHEMISTRY 1B (ADVANCED)

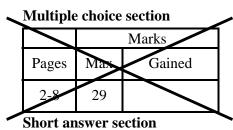
and

<u>CHEM1904 - CHEMISTRY 1B (SPECIAL STUDIES PROGRAM)</u> SECOND SEMESTER EXAMINATION

CONFIDENTIAL

NOVEMBER 2012

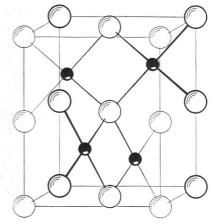
TIME ALLOWED: THREE HOURS

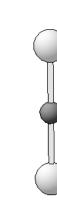

GIVE THE FOLLOWING INFORMATION IN BLOCK LETTERS

FAMILY	SID	
NAME	NUMBER	
OTHER	TABLE	
NAMES	NUMBER	

OFFICIAL USE ONLY

INSTRUCTIONS TO CANDIDATES


- All questions are to be attempted. There are 19 pages of examinable material.
- Complete the written section of the examination paper in **INK**.
- Read each question carefully. Report the appropriate answer and show all relevant working in the space provided.
- The total score for this paper is 100. The possible score per page is shown in the adjacent tables.
- Each new question of the short answer section begins with a •.
- Only non-programmable, University-approved calculators may be used.
- Students are warned that credit may not be given, even for a correct answer, where there is insufficient evidence of the working required to obtain the solution.
- Numerical values required for any question, standard electrode reduction potentials, a Periodic Table and some useful formulas may be found on the separate data sheets.
- Pages 10, 17, 18 and 24 are for rough working only.



		Marks		
Page	Max	Gaine	d	Marker
9	8			
11	9			
12	6			
13	7			
14	6			
15	6			
16	5			
19	7			
20	3			
21	4			
22	4			
23	6			
Total	71			
Check	Total			

• PdO is used as a hydrogenation catalyst and it crystallizes with the tetragonal structure shown below. NiO has a variety of uses and crystallizes with the rocksalt structure. The large spheres represent the oxygen atoms and the smaller spheres represent palladium or nickel atoms.

Marks 8

palladium(II) oxide, PdO

nickel(II) oxide, NiO

Show the structure on the left is consistent with the formula PdO.

τ	Mhat	ic the	acardination	number about	anah mata	1 otom?
١	w nat	is the	coordination	number about	each meta	Latom7

Pd: Ni:

The radius of the Pd^{2+} ion is 86 pm, that of the Ni^{2+} ion is 69 pm. Give a reason why the larger ion has a smaller coordination number.

Does either structure contain a close-packed arrangement of O²⁻ ions?

PdO: YES / NO NiO: YES / NO

If YES, indicate the layers on the unit cell(s) above.

CHEM1902/4 2012-N-3 2223(a)

• Boric acid, $B(OH)_3$, is a weak acid ($pK_a = 9.24$) that is used as a mild antiseptic and eye wash. Unusually, the Lewis acidity of the compound accounts for its Brønsted acidity. By using an appropriate chemical equation, show how this compound acts a Brønsted acid in aqueous solution.	Mar 9
Solution A consists of a 0.050 M aqueous solution of boric acid at 25 $^{\circ}$ C. Calculate the pH of Solution A.	
pH =	
At 25 °C, 1.00 L of Solution B consists of 10.18 g of NaB(OH) ₄ dissolved in water. Calculate the pH of Solution B.	
pH =	_
Using both Solutions A and B, calculate the volumes (mL) required to prepare a 1.0 solution with a pH = 8.50.	_ L

CHEM1902/4 2012-N-4 2223(a)

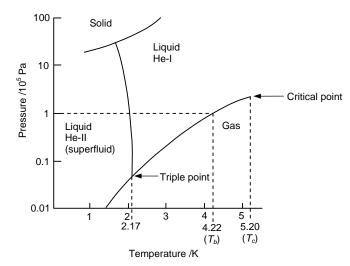
			[8] is an historically important example of a metal-metal and and nomenclature to name the complex salt.	Marks 6
th ex <i>d</i> -	te bonding distance explanation for the velectrons into the	e betwo very sh (partia	extremely short Mo–Mo bond (214 pm), much shorter than een Mo atoms in Mo metal (273 pm)! Propose a reasonable nort Mo–Mo bond length in the complex by adding l) MO scheme shown below. Draw a structure for the with the completed MO scheme and your explanation.	
4		σ^*		
		π^*		
Energy		δ*		
Н		δ		
		π		
	Mo-Mo	σ		
W		istance	by one electron gives rise to a paramagnetic species in e increases significantly. Propose a reasonable hypothesis henomenon.	

Marks 7

• Four experiments were conducted to discover how the initial rate of consumption of BrO₃⁻ ions in the reaction below varied as the concentrations of the reactants were changed.

$$BrO_3^- + 5Br^- + 6H^+ \rightarrow 3Br_2 + 3H_2O$$

Experiment	Initial concentration (mol L ⁻¹)			Initial rate
	$\mathrm{BrO_3}^-$	Br^-	H^{+}	$(\text{mol } L^{-1} \text{ s}^{-1})$
1	0.10	0.10	0.10	1.2×10^{-3}
2	0.20	0.10	0.10	2.4×10^{-3}
3	0.10	0.30	0.10	3.5×10^{-3}
4	0.20	0.10	0.15	5.4×10^{-3}

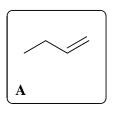

Use the experimental data in the table above to determine the order of the reaction with respect to *each* reactant.

What is the rate of formation of Br_2 when $[BrO_3^-] = [Br^-] = [H^+] = 0.10 \text{ M}$?

Write the rate law for the reaction and determine the value of the rate constant, k.

• The diagram below shows a simplified phase diagram of helium.

Marks 6

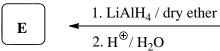

Describe two unusual properties of helium (other than the "superfluid" He-II phase) that are *not* shared by most substances.

Is it possible to liquefy helium above 5.20 K? Explain your answer.

Why is the liquefaction of He very difficult, even at low temperatures?

• Consider the following reaction sequence beginning with the alkene **A**.

Marks 6



Mg, Et₂O

$$CO_2$$
 then H^{\oplus}/H_2O

	co	onc. H_2SO_4 / heat
F.		

 \mathbf{C}

Suggest structures for compounds C - F in the reaction sequence above.

(Ċ	

D

1	F.	

 \mathbf{F}

Describe the selectivity observed, and briefly explain the reasons for it, in the conversion of alkene $\bf A$ to compound $\bf B$.

Marks 5

• Consider the three nitrogen-containing compounds P, Q and R.

$$NH_2$$
 \longrightarrow NH_2 \longrightarrow NH_2 \longrightarrow NH_2 \longrightarrow NH_2

What is the hybridisation at N in compound \mathbf{P} ?

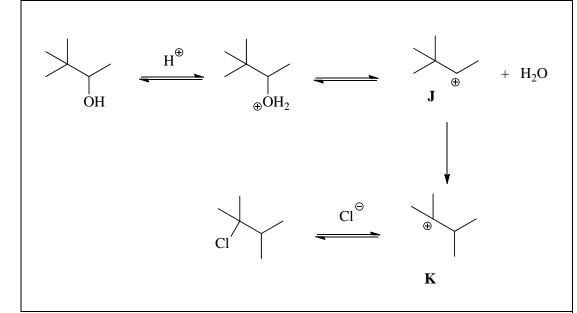
What is the hybridisation at N in compound \mathbb{Q} ?

Use this information to decide which of ${\bf P}$ or ${\bf Q}$ is more basic. Explain your reasoning.

Show curly arrows and another structure to show how compound ${\bf R}$ is stabilised by resonance.

Which is more basic, compound **P** or compound **R**? Why?

• Consider the structure of dihydrocarvone shown below.


Marks
7

Assign the absolute configuration of dihydrocarvone. Explain your reasoning.

Draw all of the products that can result from the electrophilic addition of HBr to dihydrocarvone and explain the isomeric relationship between each pair.

• Apply your understanding of curly arrows to complete a mechanism for the following S_N reaction:

Marks 3

Why does the rearrangement step $(\mathbf{J} \to \mathbf{K})$ occur?

THIS QUESTION CONTINUES ON THE NEXT PAGE.
THE REMAINDER OF THIS PAGE IS FOR ROUGH WORKING ONLY.

Reaction of K with anisole (methoxybenzene, L) gives M as the major product. Propose a mechanism for this transformation.

Marks 4

Briefly explain why the 4-substituted product \boldsymbol{M} is formed preferentially.

Marks
4

• Propose a mechanism for the following reaction.

T

What isomeric product might also form in this reaction?

Why is **T** the major product?

• Benzoic acid **H**, benzyl alcohol **I** and phenol **J** are shown below. The p K_a values of these three compounds are 15.2, 9.9 and 4.2, but not in that order.

Marks 6

$$\bigcirc \mathsf{OH}$$

 \mathbf{H}

I J

Assign the correct pK_a to each of these three compounds.

 pK_a values:

$$\mathbf{H} =$$

$$I =$$

$$J =$$

Draw resonance structures to explain your answer.

Would you expect 4-nitrophenol, **K**, to be more or less acidic than phenol, **J**? Explain your answer.

CHEM1902 - CHEMISTRY 1B (ADVANCED) CHEM1904 - CHEMISTRY 1B (SSP)

DATA SHEET

Physical constants

Avogadro constant, $N_A = 6.022 \times 10^{23} \text{ mol}^{-1}$

Faraday constant, $F = 96485 \text{ C mol}^{-1}$

Planck constant, $h = 6.626 \times 10^{-34} \text{ J s}$

Speed of light in vacuum, $c = 2.998 \times 10^8 \text{ m s}^{-1}$

Rydberg constant, $E_R = 2.18 \times 10^{-18} \text{ J}$

Boltzmann constant, $k_B = 1.381 \times 10^{-23} \text{ J K}^{-1}$

Permittivity of a vacuum, $\varepsilon_0 = 8.854 \times 10^{-12} \, \text{C}^2 \, \text{J}^{-1} \, \text{m}^{-1}$

Gas constant, $R = 8.314 \text{ J K}^{-1} \text{ mol}^{-1}$

 $= 0.08206 L atm K^{-1} mol^{-1}$

Charge of electron, $e = 1.602 \times 10^{-19} \text{ C}$

Mass of electron, $m_e = 9.1094 \times 10^{-31} \text{ kg}$

Mass of proton, $m_p = 1.6726 \times 10^{-27} \text{ kg}$

Mass of neutron, $m_{\rm n} = 1.6749 \times 10^{-27} \text{ kg}$

Properties of matter

Volume of 1 mole of ideal gas at 1 atm and 25 °C = 24.5 L

Volume of 1 mole of ideal gas at 1 atm and 0 $^{\circ}$ C = 22.4 L

Density of water at 298 K = 0.997 g cm⁻³

Conversion factors

$$1 \text{ atm} = 760 \text{ mmHg} = 101.3 \text{ kPa}$$

$$1 \text{ Ci} = 3.70 \times 10^{10} \text{ Bq}$$

$$0 \text{ °C} = 273 \text{ K}$$

$$1 \text{ Hz} = 1 \text{ s}^{-1}$$

$$1 \text{ tonne} = 10^{3} \text{ kg}$$

$$1 \text{ Å} = 10^{-10} \text{ m}$$

$$1 \text{ eV} = 1.602 \times 10^{-19} \text{ J}$$

Decimal fractions Decimal multiples Fraction Prefix Multiple Prefix Symbol Symbol 10^{-3} 10^{3} k milli kilo m 10^{-6} 10^{6} micro mega M μ 10^{-9} 10^{9} nano G n giga 10^{-12} pico p

CHEM1902 - CHEMISTRY 1B (ADVANCED) CHEM1904 - CHEMISTRY 1B (SSP)

Standard Reduction Potentials, E°

Reaction	E° / V
$\text{Co}^{3+}(\text{aq}) + \text{e}^{-} \rightarrow \text{Co}^{2+}(\text{aq})$	+1.82
$Ce^{4+}(aq) + e^{-} \rightarrow Ce^{3+}(aq)$	+1.72
$MnO_4^-(aq) + 8H^+(aq) + 5e^- \rightarrow Mn^{2+}(aq) + 4H_2O$	+1.51
$Au^{3+}(aq) + 3e^{-} \rightarrow Au(s)$	+1.50
$Cr_2O_7^{2-}(aq) + 14H^+(aq) + 6e^- \rightarrow 2Cr^{3+}(g) + 7H_2O$	+1.36
$Cl_2(g) + 2e^- \rightarrow 2Cl^-(aq)$	+1.36
$O_2(g) + 4H^+(aq) + 4e^- \rightarrow 2H_2O$	+1.23
$Pt^{2+}(aq) + 2e^{-} \rightarrow Pt(s)$	+1.18
$MnO_2(s) + 4H^+(aq) + e^- \rightarrow Mn^{3+} + 2H_2O$	+0.96
$NO_3^-(aq) + 4H^+(aq) + 3e^- \rightarrow NO(g) + 2H_2O$	+0.96
$Pd^{2+}(aq) + 2e^{-} \rightarrow Pd(s)$	+0.92
$Ag^{+}(aq) + e^{-} \rightarrow Ag(s)$	+0.80
$Fe^{3+}(aq) + e^{-} \rightarrow Fe^{2+}(aq)$	+0.77
$Cu^{+}(aq) \ + \ e^{-} \ \rightarrow \ Cu(s)$	+0.53
$Cu^{2+}(aq) + 2e^{-} \rightarrow Cu(s)$	+0.34
$\operatorname{Sn}^{4+}(\operatorname{aq}) + 2\operatorname{e}^{-} \to \operatorname{Sn}^{2+}(\operatorname{aq})$	+0.15
$2H^{+}(aq) + 2e^{-} \rightarrow H_{2}(g)$	0 (by definition)
$2H^{+}(aq) + 2e^{-} \rightarrow H_{2}(g)$ $Fe^{3+}(aq) + 3e^{-} \rightarrow Fe(s)$	0 (by definition) -0.04
$Fe^{3+}(aq) + 3e^{-} \rightarrow Fe(s)$	-0.04
$Fe^{3+}(aq) + 3e^{-} \rightarrow Fe(s)$ $Pb^{2+}(aq) + 2e^{-} \rightarrow Pb(s)$	-0.04 -0.13
$Fe^{3+}(aq) + 3e^{-} \rightarrow Fe(s)$ $Pb^{2+}(aq) + 2e^{-} \rightarrow Pb(s)$ $Sn^{2+}(aq) + 2e^{-} \rightarrow Sn(s)$	-0.04 -0.13 -0.14
Fe ³⁺ (aq) + 3e ⁻ \rightarrow Fe(s) Pb ²⁺ (aq) + 2e ⁻ \rightarrow Pb(s) Sn ²⁺ (aq) + 2e ⁻ \rightarrow Sn(s) Ni ²⁺ (aq) + 2e ⁻ \rightarrow Ni(s)	-0.04 -0.13 -0.14 -0.24
Fe ³⁺ (aq) + 3e ⁻ \rightarrow Fe(s) Pb ²⁺ (aq) + 2e ⁻ \rightarrow Pb(s) Sn ²⁺ (aq) + 2e ⁻ \rightarrow Sn(s) Ni ²⁺ (aq) + 2e ⁻ \rightarrow Ni(s) Cd ²⁺ (aq) + 2e ⁻ \rightarrow Cd(s)	-0.04 -0.13 -0.14 -0.24 -0.40
$Fe^{3+}(aq) + 3e^{-} \rightarrow Fe(s)$ $Pb^{2+}(aq) + 2e^{-} \rightarrow Pb(s)$ $Sn^{2+}(aq) + 2e^{-} \rightarrow Sn(s)$ $Ni^{2+}(aq) + 2e^{-} \rightarrow Ni(s)$ $Cd^{2+}(aq) + 2e^{-} \rightarrow Cd(s)$ $Fe^{2+}(aq) + 2e^{-} \rightarrow Fe(s)$	-0.04 -0.13 -0.14 -0.24 -0.40 -0.44
$Fe^{3+}(aq) + 3e^{-} \rightarrow Fe(s)$ $Pb^{2+}(aq) + 2e^{-} \rightarrow Pb(s)$ $Sn^{2+}(aq) + 2e^{-} \rightarrow Sn(s)$ $Ni^{2+}(aq) + 2e^{-} \rightarrow Ni(s)$ $Cd^{2+}(aq) + 2e^{-} \rightarrow Cd(s)$ $Fe^{2+}(aq) + 2e^{-} \rightarrow Fe(s)$ $Cr^{3+}(aq) + 3e^{-} \rightarrow Cr(s)$	-0.04 -0.13 -0.14 -0.24 -0.40 -0.44 -0.74
$Fe^{3+}(aq) + 3e^{-} \rightarrow Fe(s)$ $Pb^{2+}(aq) + 2e^{-} \rightarrow Pb(s)$ $Sn^{2+}(aq) + 2e^{-} \rightarrow Sn(s)$ $Ni^{2+}(aq) + 2e^{-} \rightarrow Ni(s)$ $Cd^{2+}(aq) + 2e^{-} \rightarrow Cd(s)$ $Fe^{2+}(aq) + 2e^{-} \rightarrow Fe(s)$ $Cr^{3+}(aq) + 3e^{-} \rightarrow Cr(s)$ $Zn^{2+}(aq) + 2e^{-} \rightarrow Zn(s)$	-0.04 -0.13 -0.14 -0.24 -0.40 -0.44 -0.74 -0.76
$Fe^{3+}(aq) + 3e^{-} \rightarrow Fe(s)$ $Pb^{2+}(aq) + 2e^{-} \rightarrow Pb(s)$ $Sn^{2+}(aq) + 2e^{-} \rightarrow Sn(s)$ $Ni^{2+}(aq) + 2e^{-} \rightarrow Ni(s)$ $Cd^{2+}(aq) + 2e^{-} \rightarrow Cd(s)$ $Fe^{2+}(aq) + 2e^{-} \rightarrow Fe(s)$ $Cr^{3+}(aq) + 3e^{-} \rightarrow Cr(s)$ $Zn^{2+}(aq) + 2e^{-} \rightarrow Zn(s)$ $2H_{2}O + 2e^{-} \rightarrow H_{2}(g) + 2OH^{-}(aq)$	-0.04 -0.13 -0.14 -0.24 -0.40 -0.44 -0.74 -0.76 -0.83
$Fe^{3+}(aq) + 3e^{-} \rightarrow Fe(s)$ $Pb^{2+}(aq) + 2e^{-} \rightarrow Pb(s)$ $Sn^{2+}(aq) + 2e^{-} \rightarrow Sn(s)$ $Ni^{2+}(aq) + 2e^{-} \rightarrow Ni(s)$ $Cd^{2+}(aq) + 2e^{-} \rightarrow Cd(s)$ $Fe^{2+}(aq) + 2e^{-} \rightarrow Fe(s)$ $Cr^{3+}(aq) + 3e^{-} \rightarrow Cr(s)$ $Zn^{2+}(aq) + 2e^{-} \rightarrow Zn(s)$ $2H_{2}O + 2e^{-} \rightarrow H_{2}(g) + 2OH^{-}(aq)$ $Cr^{2+}(aq) + 2e^{-} \rightarrow Cr(s)$	-0.04 -0.13 -0.14 -0.24 -0.40 -0.44 -0.74 -0.76 -0.83 -0.89
$Fe^{3+}(aq) + 3e^{-} \rightarrow Fe(s)$ $Pb^{2+}(aq) + 2e^{-} \rightarrow Pb(s)$ $Sn^{2+}(aq) + 2e^{-} \rightarrow Sn(s)$ $Ni^{2+}(aq) + 2e^{-} \rightarrow Ni(s)$ $Cd^{2+}(aq) + 2e^{-} \rightarrow Cd(s)$ $Fe^{2+}(aq) + 2e^{-} \rightarrow Fe(s)$ $Cr^{3+}(aq) + 3e^{-} \rightarrow Cr(s)$ $Zn^{2+}(aq) + 2e^{-} \rightarrow Zn(s)$ $2H_{2}O + 2e^{-} \rightarrow H_{2}(g) + 2OH^{-}(aq)$ $Cr^{2+}(aq) + 2e^{-} \rightarrow Cr(s)$ $Al^{3+}(aq) + 3e^{-} \rightarrow Al(s)$	-0.04 -0.13 -0.14 -0.24 -0.40 -0.44 -0.74 -0.76 -0.83 -0.89 -1.68
$Fe^{3+}(aq) + 3e^{-} \rightarrow Fe(s)$ $Pb^{2+}(aq) + 2e^{-} \rightarrow Pb(s)$ $Sn^{2+}(aq) + 2e^{-} \rightarrow Sn(s)$ $Ni^{2+}(aq) + 2e^{-} \rightarrow Ni(s)$ $Cd^{2+}(aq) + 2e^{-} \rightarrow Cd(s)$ $Fe^{2+}(aq) + 2e^{-} \rightarrow Fe(s)$ $Cr^{3+}(aq) + 3e^{-} \rightarrow Cr(s)$ $Zn^{2+}(aq) + 2e^{-} \rightarrow Zn(s)$ $2H_{2}O + 2e^{-} \rightarrow H_{2}(g) + 2OH^{-}(aq)$ $Cr^{2+}(aq) + 2e^{-} \rightarrow Cr(s)$ $Al^{3+}(aq) + 3e^{-} \rightarrow Al(s)$ $Sc^{3+}(aq) + 3e^{-} \rightarrow Sc(s)$	-0.04 -0.13 -0.14 -0.24 -0.40 -0.44 -0.74 -0.76 -0.83 -0.89 -1.68 -2.09
$Fe^{3+}(aq) + 3e^{-} \rightarrow Fe(s)$ $Pb^{2+}(aq) + 2e^{-} \rightarrow Pb(s)$ $Sn^{2+}(aq) + 2e^{-} \rightarrow Sn(s)$ $Ni^{2+}(aq) + 2e^{-} \rightarrow Ni(s)$ $Cd^{2+}(aq) + 2e^{-} \rightarrow Cd(s)$ $Fe^{2+}(aq) + 2e^{-} \rightarrow Fe(s)$ $Cr^{3+}(aq) + 3e^{-} \rightarrow Cr(s)$ $Zn^{2+}(aq) + 2e^{-} \rightarrow H_{2}(g) + 2OH^{-}(aq)$ $Cr^{2+}(aq) + 2e^{-} \rightarrow Cr(s)$ $Al^{3+}(aq) + 3e^{-} \rightarrow Al(s)$ $Sc^{3+}(aq) + 3e^{-} \rightarrow Sc(s)$ $Mg^{2+}(aq) + 2e^{-} \rightarrow Mg(s)$	-0.04 -0.13 -0.14 -0.24 -0.40 -0.44 -0.74 -0.76 -0.83 -0.89 -1.68 -2.09 -2.36 -2.71 -2.87
$Fe^{3+}(aq) + 3e^{-} \rightarrow Fe(s)$ $Pb^{2+}(aq) + 2e^{-} \rightarrow Pb(s)$ $Sn^{2+}(aq) + 2e^{-} \rightarrow Sn(s)$ $Ni^{2+}(aq) + 2e^{-} \rightarrow Ni(s)$ $Cd^{2+}(aq) + 2e^{-} \rightarrow Cd(s)$ $Fe^{2+}(aq) + 2e^{-} \rightarrow Fe(s)$ $Cr^{3+}(aq) + 3e^{-} \rightarrow Cr(s)$ $Zn^{2+}(aq) + 2e^{-} \rightarrow Zn(s)$ $2H_{2}O + 2e^{-} \rightarrow H_{2}(g) + 2OH^{-}(aq)$ $Cr^{2+}(aq) + 2e^{-} \rightarrow Cr(s)$ $Al^{3+}(aq) + 3e^{-} \rightarrow Al(s)$ $Sc^{3+}(aq) + 3e^{-} \rightarrow Sc(s)$ $Mg^{2+}(aq) + 2e^{-} \rightarrow Mg(s)$ $Na^{+}(aq) + e^{-} \rightarrow Na(s)$	-0.04 -0.13 -0.14 -0.24 -0.40 -0.44 -0.74 -0.76 -0.83 -0.89 -1.68 -2.09 -2.36 -2.71

CHEM1902 - CHEMISTRY 1B (ADVANCED) CHEM1904 - CHEMISTRY 1B (SSP)

Useful formulas

Useful	formulas
Quantum Chemistry	Electrochemistry
$E = hv = hc/\lambda$	$\Delta G^{\circ} = -nFE^{\circ}$
$\lambda = h/mv$	$Moles\ of\ e^- = It/F$
$E = -Z^2 E_{\rm R}(1/n^2)$	$E = E^{\circ} - (RT/nF) \times 2.303 \log Q$
$\Delta x \cdot \Delta(mv) \ge h/4\pi$	$= E^{\circ} - (RT/nF) \times \ln Q$
$q = 4\pi r^2 \times 5.67 \times 10^{-8} \times T^4$	$E^{\circ} = (RT/nF) \times 2.303 \log K$
$T \lambda = 2.898 \times 10^6 \text{ K nm}$	$= (RT/nF) \times \ln K$
	$E = E^{\circ} - \frac{0.0592}{n} \log Q \text{ (at 25 °C)}$
Acids and Bases	Gas Laws
$pK_{w} = pH + pOH = 14.00$	PV = nRT
$pK_{\rm w} = pK_{\rm a} + pK_{\rm b} = 14.00$	$(P + n^2 a/V^2)(V - nb) = nRT$
$pH = pK_a + \log\{[A^-] / [HA]\}$	$E_{\rm k} = \frac{1}{2}mv^2$
Radioactivity	Kinetics
$t_{1/2} = \ln 2/\lambda$	$t_{1/2} = \ln 2/k$
$A = \lambda N$	$k = Ae^{-Ea/RT}$
$\ln(N_0/N_{\rm t}) = \lambda t$	$ \ln[A] = \ln[A]_{o} - kt $
14 C age = 8033 ln(A_0/A_t) years	$\ln\frac{k_2}{k_1} = \frac{E_a}{R} \left(\frac{1}{T_1} - \frac{1}{T_2} \right)$
Mathematics	Thermodynamics & Equilibrium
If $ax^2 + bx + c = 0$, then $x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$	$\Delta G^{\circ} = \Delta H^{\circ} - T \Delta S^{\circ}$
$ \ln x = 2.303 \log x $	$\Delta G = \Delta G^{\circ} + RT \ln Q$
Area of circle = πr^2	$\Delta G^{\circ} = -RT \ln K$
Surface area of sphere = $4\pi r^2$	$\Delta_{\rm univ} S^{\circ} = R \ln K$
Volume of sphere = $\frac{4}{13} \pi r^3$	$\ln \frac{K_2}{K_1} = \frac{-\Delta H^{\circ}}{R} \left(\frac{1}{T_2} - \frac{1}{T_1} \right)$
Miscellaneous	Colligative Properties & Solutions
$A = -\log \frac{I}{I}$	$\Pi = cRT$
$A = -\log \frac{I}{I_0}$	$P_{\text{solution}} = X_{\text{solvent}} \times P^{\circ}_{\text{solvent}}$
$A = \varepsilon c l$	c = kp
$E = -A \frac{e^2}{4\pi\varepsilon_0 r} N_{\rm A}$	$\Delta T_{ m f} = K_{ m f} m$
$L = -A \frac{1}{4\pi\epsilon_0 r} I_{\text{VA}}$	$\Delta T_{\rm b} = K_{\rm b} m$

PERIODIC TABLE OF THE ELEMENTS

THIRD H 1.008 THIRD H	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18
He 1.008 S	1																	
1.008																		
REPUTALING FIRST CHAPTER																		
The control of the	3	4											5	6	7	8	9	10
10.81 12.01 14.01 16.00 19.00 20.18																		
11 12 13 14 15 16 17 18 18 18 18 18 18 18																		
Na																		
Na 22.99 24.31 24.31 25 26 27 28 29 30.97 32.07 35.45 39.95																		
22.99 24.31 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36																		
CALCIUM CALC													26.98	28.09	30.97	32.07	35.45	
K	19	20	21	22	23	24	25	26	27	28	29	30	31	32	33	34	35	
39.10 40.08 44.96 47.88 50.94 52.00 54.94 55.85 58.93 58.69 63.55 65.39 69.72 72.59 74.92 78.96 79.90 83.80																		
37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54				1														
RUBDIUM STRONTIUM STRONT																		
Rb																		
S5.47 S7.62 S8.91 91.22 92.91 95.94 [98.91] 101.07 102.91 106.4 107.87 112.40 114.82 118.69 121.75 127.60 126.90 131.30																		
CASSIUM BARIUM CS Ba HAFNIUM TANTALUM TUNGSTEN RHENIUM OSMIUM IRIDIUM PLATINIM GOLD MERCURY THALLUM LEAD BISMUTH FOLONIUM ASTATINE RADON		87.62	88.91										114.82				126.90	
Cs Ba Hf Ta W Re Os Ir Pt Au Hg Tl Pb Bi Po At Rn		56	57-71	72	73		75	76	77	78	79	80	81	82		84	85	86
132.91 137.34 178.49 180.95 183.85 186.2 190.2 192.22 195.09 196.97 200.59 204.37 207.2 208.98 [210.0] [210.0] [222.0]																		
87				l I														
Francium Radium Retherfordium Durnium Seaborgium Bohrium Hassium Metinerium Darmstadtium Roentgenium R			90 102	1									204.37	207.2	208.98	[210.0]	[210.0]	[222.0]
Fr Ra Rf Db Sg Bh Hs Mt Ds Rg Cn																		
		Ra			Db	Sg	Bh		Mt	$\mathbf{D}\mathbf{s}$	Rg							
				1								[283]						

LANTHANOID S

ACTINOIDS

ID	57	58 CERIUM	59 Praseodymium	60 NEODYMIUM	61 PROMETHIUM	62 Samarium	63 EUROPIUM	64 gadolinium	65 TERBIUM	66 Dysprosium	67 HOLMIUM	68 erbium	69	70 ytterbium	71
עות	La	Ce	Pr	Nd	Pm	Sm	Eu	Gd	Tb	Dy	Ho	Er	Tm	Yb	Lu
	138.91	140.12	140.91	144.24	[144.9]	150.4	151.96	157.25	158.93	162.50	164.93	167.26	168.93	173.04	174.97
S	89	90	91	92	93	94	95	96	97	98	99	100	101	102	103
	ACTINIUM	THORIUM	PROTACTINIUM	URANIUM	NEPTUNIUM	PLUTONIUM	AMERICIUM	CURIUM	BERKELLIUM	CALIFORNIUM	EINSTEINIUM	FERMIUM	MENDELEVIUM	NOBELIUM	LAWRENCIUM
	Ac	Th	Pa	\mathbf{U}	Np	Pu	Am	Cm	Bk	Cf	$\mathbf{E}\mathbf{s}$	Fm	Md	No	Lr
	[227.0]	232.04	[231.0]	238.03	[237.0]	[239.1]	[243.1]	[247.1]	[247.1]	[252.1]	[252.1]	[257.1]	[256.1]	[259.1]	[260.1]